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LETTER TO THE EDITOR 

The fractal nature of viscous fingering in porous media 

P R King 
BP Research Centre, Chertsey Road, Sunbury-on-Thames, Middlesex, TW16 7 L N ,  UK 

Received 20 January 1987 

Abstract. Viscous fingering in porous media is an instability which occurs when a less 
viscous fluid displaces a more viscous one. An interface between the fluids is unstable 
against small perturbations and gives rise to a fingered configuration. In the oil industry 
viscous fingering can be a serious problem when displacing viscous oil by a more mobile 
fluid because it leads to poor recovery of the hydrocarbon. Recent work suggests an analogy 
between viscous fingering at an infinite viscosity ratio and diffusion-limited aggregation 
(DLA) and hence that the fingers may be fractal with a fractal dimension of around 1.7 
(in two dimensions). This leaves unanswered the question of the nature of the fingered 
patterns at a finite viscosity ratio. To answer this a network model of the porous medium 
has been used. The rock is modelled as a lattice of capillary tubes of random radius 
through which miscible displacement occurs. At a high viscosity ratio and in the presence 
of a large amount of disorder the model reproduces DLA fingering patterns. The results 
of this model provide evidence that at a finite viscosity ratio the displaced area is compact 
with a surface fractal dimension between 1 and the DLA result of 1.7 with increasing 
viscosity ratio. 

When a fluid is forced into a porous medium to displace another more viscous fluid 
the interface between the two fluids is unstable to small perturbations. As time proceeds 
the interface develops a highly complex fingered pattern. In the oil industry this can 
lead to a poor recovery of hydrocarbon as the displacing fluid bypasses the oil. This 
can have serious economic consequences and has therefore led to a number of 
experimental [ 1-31 and semi-empirical [4-61 methods to characterise the phenomenon. 
The first theoretical analysis by Saffmann and Taylor [7] was of the related problem 
of Hele-Shaw [8] flow. This model has subsequently received an intensive study both 
theoretical and experimental [9-113. However, there are many differences between 
Hele-Shaw and porous medium flow. The macroscopic, continuum differential 
equations of flow are the same (Darcy’s law [12,13]) but in a porous medium flow 
occurs in a discrete, highly chaotic network of pores and pore throats. This adds a 
large noise component to the mean flow which is not present in Hele-Shaw flow. It 
is modelled in numerical simulations of porous medium flow by the inclusion of 
dispersion terms and larger scale variation in the permeability [ 141. 

Recently this noisy element of porous medium flow has received some attention 
and has led to the development of stochastic models of the fingering phenomenon. In 
particular, an analogy [ 151 has been made between the diffusion-limited aggregation 
(DLA) model of Witten and Sander [16] and viscous fingering with a zero viscosity 
displacing fluid. Since then many attempts have been made to modify DLA to include 
surface tension effects [17, 181. However, fewer attempts to allow for a finite viscosity 
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ratio [ 19,201 have been made, although other stochastic (non-random walk) models 
have been used [21,22]. 

These stochastic models show that the viscous fingering patterns appear to be fractal 
and at an infinite viscosity ratio the fractal dimension is that of DLA (around 1.7). This 
has also been found for very high viscosity ratio displacements in Hele-Shaw cells 
[23,24]. However, the models have been inconclusive about the fractal nature of 
viscous fingers at a finite viscosity ratio. The purpose of this letter is to examine this 
issue. 

It is clear that the highly ramified structure of DLA cannot be sustained at a finite 
viscosity ratio. In order to supply a finger tip with fluid there must be a higher pressure 
at the base of the finger. This gives a transverse pressure gradient at the base and 
hence a lateral spreading there. From this it would seem plausible that the interior of 
a finger is compact (of dimension two) with a surface fractal region. For DLA the 
fingers are all surface with dimension 1.7. Hence we conjecture that the surface fractal 
dimension is a function of viscosity ratio varying between one (when the viscosities 
are matched) to 1.7 for an infinite viscosity ratio. Further the noise element of DLA 

may be reduced by requiring a site to be visited a certain number of times before 
growth is allowed there. It is known that this does not alter the fractal dimension of 
DLA [25]. Hence we also conjecture that the amount of noise present in the system 
does not affect the fractal dimension of the interface. 

To test these conjectures we focus on viscous fingering on the pore scale. We use 
a network model similar to that used previously to examine pore scale fingering at an 
infinite viscosity ratio [26]. The model is a hexagonal network of cylindrical tubes of 
length L and variable radius r. The radii are taken uniformly from the interval 
[ l  - A ,  1 + A ]  where A is a variable disorder parameter. We use a hexagonal network 
rather than a square one because it is less prone to persistent grid effects at large 
distances [27]. Also this geometry is similar to close packed spheres in two dimensions. 
The tubes are considered to be long compared to their width so that the pressure drop 
associated with the nodes may be neglected. We also neglect mixing of the fluids at 
the nodes assuming that surface tension forces stabilise the interface without intro- 
ducing a pressure drop. However, the displacement is assumed to be piston-like down 
each tube. The flow rate (Qu) down the tube connecting nodes i and j is given by 
Poiseuille’s law 

Here pi is the pressure at the ith node, 7, is the viscosity of the injected fluid, v2 
is the viscosity of the displaced fluid and xu is the length of bond i j  occupied by the 
injected fluid. The conductance of the bond g, is a function of time as the interfaces 
move. At each node there is a conservation of fluid 

Qij=O. 
j 

To avoid the complications due to finite boundaries in a linear flood we use a 
radial configuration with injection of the less viscous fluid into the centre of a circular 
region (of radius ro) initially occupied by the more viscous fluid. The central injection 
point and the circular perimeter are at constant pressure with a fixed (and arbitrary) 
pressure difference between the two. The viscosity (or mobility) ratio M is defined as 
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Figure 1. Computer simulations of viscous fingering at different values of the disorder 
parameter ( A )  and viscosity ratio ( M ) .  
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the ratio v2/q1.  We solve for the pressures from (1) and (2) using successive over- 
relaxation 

The over-relaxation parameter (a) was set at around 1.7. Once the pressure field 
has been established the fluxes in each tube are calculated from (1). A time step is 
calculated such that only one interface reaches a node and all the interfaces are updated 
accordingly. For the new configuration the pressure field is recalculated and the whole 
process is continued until the outer boundary is reached. 

Figure 1 shows the results of the simulation for a variety of values of the disorder 
parameter A and the viscosity ratio M. It can be seen that for small amounts of disorder 
there are very strong grid effects. Just how much disorder is required to overcome this 
is an interesting and as yet unanswered question. For the model considered it would 
appear that a value of A between 0.1 and 0.5 is sufficient to destroy the grid effect. As 
the disorder and viscosity ratio increase the finger patterns look more like typical DLA 

simulations. 
We divide the invaded sites into two types: interior sites, those for which all 

neighbouring nodes are also occupied by injected fluid; and surface sites, those which 
have one or more nearest neighbours occupied by the displaced fluid and which are 
on the interface (we exclude isolated, residual regions). To calculate the bulk fractal 
dimension (0,) we counted the number of interior sites NI inside a disc of radius r 
centred on the injection centre up to the radius of the whole region, r,. This should 
scale as NI - rD1. A log-log plot is shown in figure 2 for a typical case. In this and 
all other cases considered it is confirmed that the interior sites are compact, that is of 
dimension two. To calculate the surface fractal dimension (D,)  we used the two-point 
correlation function for the surface sites. We did this by counting the number of 
surface sites ni( r )  in a shell around site i between radius r and r + Ar. The correlation 
function was then calculated from [28] 

1 
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Figure2. Plot of log (no of interior sites) against log (radius) to calculate the interior 
fractal dimension, with M = 5.0, A = 0.5. The broken line is of gradient 2. 
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Figure 3. Plot of log (two-point correlation function) against log (radius) to calculate the 
surface fractal dimension. M = 5.0, A =0.5, D,- 1.25 and the broken line is of gradient 

We expect the correlation function to scale as p ( r )  - rDs-’  in two dimensions. A 
typical log-log plot is shown in figure 3. For several realisations at both the same and 
different values of A at a fixed viscosity ratio the results indicate that there is no 
dependence of the surface fractal dimension on the amount of disorder in the system. 
However, by performing the simulations at different values of the viscosity ratio it is 
shown that there is a systematic dependence of the surface fractal dimension on M. 
This is shown in figure 4. The error bars are derived from simulations at different and 
the same levels of disorder. The broken line represents the most simple polynomial 
fit to the results (equation ( 5 ) ) .  It is not suggested that there is any theoretical 
justification behind this curve: 

--0.75. 

D, = 1 f-  2 (-) M - 1 ’  
3 M + 1  . t 5 )  

(M-1) / ( M + 1 )  

Figure 4. Surface fractal dimension as a function of viscosity ratio. 



L534 Letter to the Editor 

In conclusion we have used a network model of porous medium flow to provide 
support for the conjecture that viscous fingering is a surface fractal phenomenon. That 
is the interior of the fingers are compact. However, the interface region is fractal with 
dimension a continuous function of viscosity ratio between one (for unit viscosity 
ratio) to about 1.7 for the infinite viscosity ratio case analogous to diffusion-limited 
aggregation. 

The author would like to thank R C Ball (Cavendish Laboratory, Cambridge) for many 
interesting discussions about this work and British Petroleum for permission to publish 
this letter. 
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